skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Most, Elias_R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Supermassive binary black holes in galactic centers are potential multimessenger sources in gravitational waves and electromagnetic radiation. To find such objects, isolating unique electromagnetic signatures of their accretion flow is key. With the aid of three-dimensional general-relativistic magnetohydrodynamic simulations that utilize an approximate, semianalytic, superimposed spacetime metric, we identify two such signatures for merging binaries. Both involve magnetic reconnection and are analogous to plasma processes observed in the solar corona. The first, like colliding flux tubes that can cause solar flares, involves colliding jets that form an extended reconnection layer, dissipating magnetic energy and causing the two jets to merge. The second, akin to coronal mass ejection events, involves the accretion of magnetic field lines onto both black holes; these magnetic fields then twist, inflate, and form a trailing current sheet, ultimately reconnecting and driving a hot outflow. We provide estimates for the associated electromagnetic emission for both processes, showing that they likely accelerate electrons to high energies and are promising candidates for continuous, stochastic, and/or quasi-periodic higher-energy electromagnetic emission. We also show that the accretion flows around each black hole can display features associated with the magnetically arrested state. However, simulations with black hole spins misaligned with the orbital plane and simulations with larger Bondi radii saturate at lower values of horizon-penetrating magnetic flux than standard magnetically arrested disks, leading to weaker, intermittent jets owing to feedback from the weak jets or equatorial flux tubes ejected by reconnecting field lines near the horizon. 
    more » « less
  2. Abstract We perform the first magnetohydrodynamic simulation tracking the magnetosphere of a collapsing magnetar. The collapse is expected for massive rotating magnetars formed in merger events and may occur many hours after the merger. Our simulation suggests a novel mechanism for a gamma-ray burst (GRB), which is uncollimated and forms a delayed high-energy counterpart of the merger gravitational waves. The simulation shows that the collapse launches an outgoing magnetospheric shock, and a hot magnetized outflow forms behind the shock. The outflow is baryon free and uncollimated, and its power peaks on a millisecond timescale. Then, the outflow becomes modulated by the ring-down of the nascent black hole, imprinting its kilohertz quasi-normal modes on the GRB tail. 
    more » « less
  3. Abstract A variety of high-energy astrophysical phenomena are powered by the release—via magnetic reconnection—of the energy stored in oppositely directed fields. Single-fluid resistive magnetohydrodynamic (MHD) simulations with uniform resistivity yield dissipation rates that are much lower (by nearly 1 order of magnitude) than equivalent kinetic calculations. Reconnection-driven phenomena could be accordingly modeled in resistive MHD employing a nonuniform, “effective” resistivity informed by kinetic calculations. In this work, we analyze a suite of fully kinetic particle-in-cell (PIC) simulations of relativistic pair-plasma reconnection—where the magnetic energy is greater than the rest mass energy—for different strengths of the guide field orthogonal to the alternating component. We extract an empirical prescription for the effective resistivity, η eff = α B 0 J p / J p + 1 + e n t c p + 1 , whereB0is the reconnecting magnetic field strength,Jis the current density,ntis the lab-frame total number density,eis the elementary charge, andcis the speed of light. The guide field dependence is encoded inαandp, which we fit to PIC data. This resistivity formulation—which relies only on single-fluid MHD quantities—successfully reproduces the spatial structure and strength of nonideal electric fields and thus provides a promising strategy for enhancing the reconnection rate in resistive MHD simulations. 
    more » « less
  4. Abstract Neutron stars have solid crusts threaded by strong magnetic fields. Perturbations in the crust can excite nonradial oscillations, which can in turn launch Alfvén waves into the magnetosphere. In the case of a compact binary close to merger involving at least one neutron star, this can happen through tidal interactions causing resonant excitations that shatter the neutron star crust. We present the first numerical study that elucidates the dynamics of Alfvén waves launched in a compact binary magnetosphere. We seed a magnetic field perturbation on the neutron star crust, which we then evolve in fully general-relativistic force-free electrodynamics using a GPU-based implementation. We show that Alfvén waves steepen nonlinearly before reaching the orbital light cylinder, form flares, and dissipate energy in a transient current sheet. Our results predict radio and X-ray precursor emission from this process. 
    more » « less
  5. Abstract In nuclear matter in isolated neutron stars, the flavor content (e.g., proton fraction) is subject to weak interactions, establishing flavor (β-)equilibrium. However, there can be deviations from this equilibrium during the merger of two neutron stars. We study the resulting out-of-equilibrium dynamics during the collision by incorporating direct and modified Urca processes (in the neutrino-transparent regime) into general-relativistic hydrodynamics simulations with a simplified neutrino transport scheme. We demonstrate how weak-interaction-driven bulk viscosity in postmerger simulations can emerge and assess the bulk viscous dynamics of the resulting flow. We further place limits on the impact of the postmerger gravitational-wave strain. Our results show that weak-interaction-driven bulk viscosity can potentially lead to a phase shift of the postmerger gravitational-wave spectrum, although the effect is currently on the same level as the numerical errors of our simulation. 
    more » « less
  6. Abstract We present a discontinuous Galerkin-finite difference hybrid scheme that allows high-order shock capturing with the discontinuous Galerkin method for general relativistic magnetohydrodynamics in dynamical spacetimes. We present several optimizations and stability improvements to our algorithm that allow the hybrid method to successfully simulate single, rotating, and binary neutron stars. The hybrid method achieves the efficiency of discontinuous Galerkin methods throughout almost the entire spacetime during the inspiral phase, while being able to robustly capture shocks and resolve the stellar surfaces. We also use Cauchy-characteristic evolution to compute the first gravitational waveforms at future null infinity from binary neutron star mergers. The simulations presented here are the first successful binary neutron star inspiral and merger simulations using discontinuous Galerkin methods. 
    more » « less